Mesosynthesis of ZnO-silica composites for methanol nanocatalysis.
نویسندگان
چکیده
Methanol catalysis meets chemistry under confined conditions. Methanol is regarded as one of the most important future energy sources. ZnO/Cu composite materials are very effective in heterogeneous catalysis for methanol production due to the so-called strong metal-support interaction effect (SMSI). Therefore, materials of superior structural design potentially representing model systems for heterogeneous catalysis are highly desired. Ultimately, such materials could help to understand the interaction between copper and zinc oxide in more detail than currently possible. We report the preparation of nanocrystalline, size-selected ZnO inside the pore system of ordered mesoporous silica materials. A new, liquid precursor for ZnO is introduced. It is seen that the spatial confinement significantly influences the chemical properties of the precursor as well as determines a hierarchical architecture of the final ZnO/SiO(2) nanocomposites. Finally, the ability of the materials to act as model systems in methanol preparation is investigated. The materials are characterized by a variety of techniques including electron microscopy, X-ray scattering, solid-state NMR, EPR, EXAFS, and Raman spectroscopy, and physisorption analysis.
منابع مشابه
Preparation of Cu/ZnO and Cu/ZnO/Al2O3 Methanol Catalysts by Gas-Phase Loading of Mesoporous Silica: Aiming at Superior Catalytic Activity by Molecular Control of their Microstructure
Copper-based catalysts (Cu/ZnO and Cu/ZnO/Al2O3) are the basis of the industrial methanol synthesis and methanol oxidation and are important components of fuel cell technology. For the preparation of these catalysts, metal–organic chemical vapor deposition (MOCVD) technique has proven its potential. Furthermore, studying synergistic metal–support interactions, strategies can be developed to gai...
متن کاملPreparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis.
Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metal-organic Cu precursor [Cu{(OCH(CH(3))CH(2)N(CH(3))(2))}(2)] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) ...
متن کاملOn the role of oxygen defects in the catalytic performance of zinc oxide.
Metal oxides are highly important as components in heterogeneous catalysts. It is also well established that as the building blocks of nanoscaled materials get smaller, surfaces become increasingly important in determining their properties. Very early on, researchers found that catalytic activity is only indirectly related to the surface area; in fact it depends on the density of active sites. ...
متن کاملIn situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production.
Cu nanoparticles (CuNPs) were successfully synthesized in situ on ZnO whiskers as a selective scaffold, which were supported in a microstructured paper matrix composed of inorganic fibers; as-prepared paper composites were easy to handle in practical use and demonstrated excellent catalytic performance in the methanol reforming process for effective hydrogen production.
متن کاملStudy on diffusion coefficient of benzene and ethyl benzene vapours in nanoporous silica aerogel and silica aerogel-activated carbon composites
In this study, nanoporous silica aerogel and silica aerogel-activated carbon composites have been synthesized using a water glass precursor by cost effective ambient pressure drying method. Equilibrium and kinetics of benzene and ethyl benzene adsorption on silica aerogel and its composites have been measured in a batch mode at tree weights of adsorbent. For the first time, the experimental dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 34 شماره
صفحات -
تاریخ انتشار 2005